
Antigravity and classical solutions of five-dimensional Kaluza-Klein theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 565

(http://iopscience.iop.org/0305-4470/16/3/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 565-574. Printed in Great Britain 

Antigravity and classical solutions of five-dimensional 
Kaluza-Klein theory 

David Pollard 
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, UK 

Received 10 March 1982, in final form 9 July 1982 

Abstract. We exhibit classical solutions of a graviton-graviphoton-graviscalar field theory 
which are antigravitating in the weak-field approximation. The theory itself is obtained 
by a Kaluza-Klein type reduction from five to four dimensions. The solutions are dyonic 
black holes with scalar charge. They share some similarities with the extreme Reissner- 
Nordstrom black holes of Einstein-Maxwell theory. 

1. Introduction 

This work was originally motivated by interest in investigating what Scherk (1980) 
calls ‘antigravity’. In essence this phenomenon is one where the gravitational and 
other forces between certain objects in a field theory can mutually cancel in the Born 
approximation. This can occur when the structure of the part of the Lagrangian 
describing the coupling of objects in the theory to the dynamical fields that give rise 
to exchange forces imposes relationships between the coupling constants in the theory. 

In this paper, we first review work by Scherk describing the sense in which classical 
solutions (loosely referred to as ‘objects’ above) of certain theories can be antigravitat- 
ing in the weak-field limit. In particular we concentrate on his suggestion that 
Kaluza-Klein reduction of five-dimensional gravity to four dimensions provides a 
theory in which one could search for tensor-vector-scalar antigravitating objects. 

The main work presented here (§§ 4 and 5 )  is a search amongst presently known 
classical solutions of the candidate theory for tensor-vector-scalar antigravitating 
objects. We show that one of these classical solutions is a plausible antigravitating 
object if we allow the vector exchange force to include magnetic as well as the usual 
electric interaction. This solution has properties somewhat similar to those of the 
extreme Reissner-Nordstrom solution of the Einstein-Maxwell system which is a 
tensor-vector antigravitating object. 

2. Antigravity in classical solutions 

In extended supersymmetries there are supermultiplets in which fields of lower spin 
occur as natural partners of the graviton. This admits the possibility that, in coupling 
such multiplets to others, relationships between the coupling strength of the graviton 
and of its lower-spin partners may arise. As Scherk (1980) has explained the simplest 
model in which this occurs is N = 2 supergravity. In N = 2 supergravity, the graviton’s 

@ 1983 The Institute of Physics 565 



566 D Pollard 

multiplet contains e L ( x ) ,  the vierbein; * ; ( x ) ,  two Majorana gravitini, and A,(x) ,  a 
vector field. A,(x) gauges the central charge 2 of N = 2 supersymmetry and couples 
to massive matter multiplets by appearing in covariant derivatives 

9, = a, - igA, 

where g = KM, M is the mass of the massive multiplet and K' = 4rrG, with G as 
Newton's constant. 

The important point is that since 2 has the dimensions of mass, A, has a 
mass-dependent coupling (for this reason it is often referred to as a graviphoton), as 
does the graviton. Thus in the static, spherically symmetric, weak-field approximation 
to the force between two massive particles, the potential is found to be (Zachos 1978) 

2 

V ( r )  = - 
4 rrr 

where we have used 

g = EKM 

with 
particle 

E = { ' ;  antiparticle. 

Evidently the force between a widely separated particle (or antiparticle) pair vanishes, 
though it is doubled between a particle-antiparticle pair. The case of vanishing force 
due to graviton-graviphoton exchange cancellation is an example of what Scherk calls 
antigravity. 

The N = 2 Lagrangian density for the {e ; ,  G;, A,} multiplet reduces to 

if we set 4; = 0 as we should if we are concerned with classical tensor-vector effects. 
Looking for an antigravitating object necessitates solving the field equations arising 
from s r e d .  Such an object would need to be static and spherically symmetric. Its 
charge and mass would need to be related by Q 2  = K ~ M * .  

Now x r e d  is just the Einstein-Maxwell Lagrangian and the well known Reissner- 
Nordstrom solutions have most of the properties we desire. Choosing K' = 1 the 
solutions are 

d s 2 = - B ( r ) d t 2 + d r 2 / B ( r ) + r 2 d f l  

A ,  = {Ai, 0 ,  0 ,  0 )  A,  = Q/4rrr 

where 

2m Q 2  B(r)  = 1 --+- 
4rrr (4rr12r2' 

(2.1) 

These objects are electrically charged black holes if M 2  2 Q2.  The tensor-vector 
antigravity condition Q 2  = M 2  singles out the extreme black hole. These black holes 
are antigravitating in the sense that two such objects if widely separated would 
experience no net force due to the exchange of virtual gravitons and photons in the 
case where forces were governed by the N = 2 supergravity Lagrangian. 
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3. Kaluza-Klein reduction 

Kaluza-Klein type reduction-from five to four dimensions-f the Einstein 
Lagrangian provides a Lagrangian for the graviton, graviphoton and graviscalar. These 
fields all couple to external fields in a mass-dependent way and again there is the 
possibility of weak-field force cancellation. 

In particular, consider the five-dimensional Lagrangian density (K2 = 1) 

(The symbol A denotes five dimensions, and the superscripts E and m are for ‘Einstein’ 
and matter.) We assume that the five-dimensional space-time has a Killing vector 
associated with a compact dimension with S’ (circular) topology. Taking our four- 
dimensional world to be the hypersurface orthogonal to the Killing vector, we can 
introduce the following ansatz for the space-time dependence of our fields: 

t‘;(x, y )  = E % ( X )  

cp(x,y)=cp(x)exp(imy) 

and we may parametrise the funfbein 
x 1. ..I1 

(3.2) 

by (Scherk 1980) 
Y 

A,(x) and u (x )  will be our graviphoton and graviscalar, respectively. With this choice 

(3.4) 

The fifth dimension now becomes a gauged internal dimension as can be verified 
locally by noting that, with our ansatz, coordinate transformations in the fifth 
dimension reduce to 

2: +z4 = -1 reR + ;e exp(2J%r)F,,,FP” + $ g w v a , u a ~ .  

(3.5) 

-Y? +%’’ =e[gP’”(aw +i2mA,)cp*(aV -i2mAv)cp -m2cp*4 exp(-2J?a)]. 

In (3.6) we see the mass-dependent coupling of the graviphoton and graviscalar. 

(3.6) 

The weak-field static potential is 

1 
47r 

V(r) = --mm’(l - ~ E E ’  + 3). (3.7) 

Thus, the force between two identical objects has (apart from the gravitational 
attraction), an ‘electromagnetic’ repulsion with charge Q where Q2 = 4M2,  and a 
scalar attraction with an effective scalar charge s where s 2  = 3M2. (By analogy with 
the electric case, we let the scalar charge of an object be the coefficient of 1 / 4 m  in 
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the asymptotic expansion of its scalar field). This condition 

Q2 = 4M2 s2  = 3M2 (3.8) 

will be called the Scherk antigravity condition. Objects whose mass, electric charge 
and scalar charge are so related, will experience no mutual force when widely separated. 

At this stage it is important to notice that the parametrisation chosen in equation 
(3.3) is equivalent to the following parametrisation of the five-dimensional metric: 

where w 2 ( x )  = exp(4u(x ) /h ) .  

y:: is chosen so that 
This differs from the more usual parametrisation where the four-dimensional metric 

(3.10) 

It is important to take this conformal relationship into account when identifying the 
various charges in classical solutions. 

In the next two sections we will investigate what happens when we impose the 
relationships (3.8) on the known static, spherically symmetric solutions of the field 
equations derived from (3.4). 

(4) (4) 
Y F V  = g,v/w. 

4. The CD solution 

Several authors (Chodos and Detweiler 1981, Dobiasch and Maison 1981, Belinski 
and Ruffini 1980) have presented classical solutions of the field equations derived 
from field theories equivalent to (3.4). In this section we look for antigravitating 
objects in the solutions due to Chodos and Detweiler (CD) (Note that the solutions 
of Belinski and Ruffini may immediately be omitted from consideration because they 
are rotating, i.e. not static.) 

Written in terms of the quantities defined in (3.9) the CD solution is (space-time 
coordinates r ,  r, 8, cp): 

-(1+K11/2 1/2 + (1 - ad* 1 1 / 2  ( l + K ) ’ / Z  
a=*  [Q* 

2 
2 14) (r2 - B 2 ) 2  

ds = g F , ,  dx” dx” = - d t2+Gdr2+r :  dR 
r rs r 

where 
4B 

(K + 4)1’2 

A I 2 8  

A =  

al, K and B are the three (constant) parameters that characterise a solution. 
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The field equations derived from (3 .4 )  show that the curvature scalar (R) is given 
by 

R o c g F w a w ~ a ~ ,  

hence 

R E  ( r 2  - B2)4 

by the following asymptotic formulae: 

A2r443’2 {~~[l+(1+K)’~~]~~~~~’~’*+(1-a~)[1-(1+K)’~~]~~~~~~~’’~}~ . (4 .2 )  

We identify the scalar charge (s), gravitational mass ( M )  and electric charge (Q) 

[alJ/(l+K)’’* + (1 -al)4-~1-K)1’z]5/2 

2 s  6J-1+- -  

goo - 1 - 2 M / 4 v r  

A ,  - Q / 4 m  as r + m .  

Note that r + rs as r + CO where rs is a ‘true’ radial coorl 

J? 4Tr 

(4 .3 )  

inate in the sense that 4 v r :  
is the area of a sphere centred at the origin. Thus, the asymptotic expansion in (4 .3 )  
in terms of r is the same as would be obtained when expanding in terms of rs. 

Using (4 .3 )  we obtain the following expressions for the charges in terms of the 
parameters of the solutions: 

s = - T J S A [ ~ + ( ~ U ~ - ~ ) ( ~ + K ) ’ ’ ~ ]  

M = ~ T A  - T A  [ 1 + (2a 1 - 1) ( 1 + K )  ‘’’1 
Q = - 4 v [ a l ( u l -  1 ) A 2 ( 1  +K)I1/’, 

From these expressions in turn we obtain 

4Th = M - s/J3 

(4 .4 )  

An obvious generalisation of equation (3 .7)  shows that the force between two widely 
separated objects with mass, electric and scalar charge is 

Forcea  ( Q Q ’ - M M ‘ -  s s ’ ) / r2 .  (4 .6 )  

From equations ( 4 . 5 )  and (4 .6 )  we see that there is a whole class of CD metrics 
which will experience zero force between widely separated identical pairs, i.e. anti- 
gravity. These are the metrics with B = 0. (The Scherk antigravity condition, s 2  = 3M2, 
Q2 = 4 M 2 ,  will be one of these metrics). 

In the limit B = 0 

K = - 4  and 4 + exp(-A/r). 

Now the Scherk condition requires 

s = 4 ? M ,  
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but note that 

4irA = M - s/ JX. 
So s = +JXM would imply A = 0 and indeed the solution would be the trivial, flat, 
empty-space one. We therefore implement Scherk’s condition by letting 

s = - J X M .  

A = M / 2 x  and a l = i - i / 2 J 3 .  
- 

Then 

From (4.2) we easily see that for these metrics there is a physical singularity when 

[cos(hA/r)  - (l/&) sin(&/r)] = 0 ,  

ro = 2 J X ~ / t a n - ’ ( J 3 ) .  
i.e. at 

This singularity is not clothed by any horizon and the space-time therefore has a 
naked singularity, as do all other (B  = 0) antigravitating CD metrics. 

Thus insofar as we believe naked singularities to be non-physical objects, we must 
conclude that the CD solutions do not provide a physical realisation of the antigravity 
condition. 

5. The DM solution 

The DM solutions of interest (excluding those with logarithmic and branch-type 
singularities) are (Dobiasch and Maison 198 1) 

2 w = B / A  

where 

a L  
f2( i )  = (;+;) -T 

a, p and a are the three (constant) parameters that specify a solution. E, and B ,  are 
the radial elecctric and magnetic fields respectively. We have used the notation r‘ for 
the DM radial coordinate which differs from the radial coordinate used by Chodos 
and Detweiler (1981). 
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The vector field for this solution is 

A ,  = Si/2B A,=Ae=O A ,  = $ cos 8. 

In fact 

A’ = g“’A, 

and 
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(5.3) 

y cos8 
2 i  sin 8 

as i-, CO. A“ -- - 
Since i + r s  at infinity we see that these objects behave magnetically like Dirac 
monopoles (Olive and Goddard 1978). Since these objects are also electrically 
charged, they are dyons. Asymptotic expansions lead to the following expressions for 
the charges of the solution in terms of the parameters: 

s = . r rJ3(~ + a )  M = v(P - a )  

P = 2 v y  
(5.4) 

Q = 2 v S  

where P is the magnetic charge. A little works yields the curvature scalar 

f’ (AB’-  BA‘)’ 
B’A’ ‘ 

Roc- 
(AB)”’ ( 5 . 5 )  

(The prime denotes differentiation with respect to i.) 

the magnetic field is identically zero? Zero magnetic field means 
The immediate question is: does the DM solution look like the CD solution when 

i.e. 

a = o  or a =a. 

The comparison is most easily performed by conformally transforming both DM and 
CD metrics to (see (3.10)) 

ds’=y:i dx* dx” 

and then comparing them. The question of equivalence is then 

-e”  d t 2 + e P  dr2+ePr2df l=- ( f ’ /B)dt2+(A/f2)d~’+A d n  (5.6) 
when a = 0 or a = a where 

1 ( 1  + K ) 1  /z  - ( l + K ) l / z  +(l-ad* e v ( r )  - -*/Tal* 
and 

= (r’ - B’)’/r4G’. 

Evidently the I, 8 and cp coordinates are the same in both metrics, but the radial 
coordinates r and r‘ may be different. 

(i) When a = 0: 

A(?) =f’( i ) .  
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If (5.6) is to be true, the relationship between radial coordinates is given by f ‘ ( ? ) =  
e O ( r ) r 2  . Then the equivalence of the yo0 and scalar fields implies 

2 e” = f 2 / B  = A / B  = 1 / w k M  = l / w c D ,  

i.e. 

G 2 ( r ) / w L ( r )  = 1 / u L ( r ) .  

This inconsistency is only removed when the solutions are both trivially flat. So the 
a = 0 limit of the DM solution does not yield the CD solutions. 

(ii) When a = a : 

A = ;’ f ’ =  ?(?+a) 

B =?(?+a + p ) .  
The relationship between radial coordinates is 

?2 = e 4 ( r ) r 2  

Equality of the yoo would then imply 

e” = f 2 / B  

i.e. 
*’ e”’r +a 

u C D  e P i 2 r + a  + p  
-- 

2 -  

which is again an inconsistency for the general CD solution. 
Our conclusion is then that despite their inclusion of an extra magnetic field, the 

DM solutions are not more general than the CD ones, but merely different. We must 
now examine the antigravity metrics in these DM solutions. 

Dobiasch and Maison (1981) have presented a concise analysis of the singularity 
structure of their solutions. Their results remain largely true after the conformal 
rescaling (3.10) because the canonical curvature scalar is again only singular when 
A(r)  or B ( r )  vanishes (see ( 5 . 5 ) ) .  However, the allowed ranges of the parameters a,  
p and a,  compatible with the reality of y and S and positivity of the gravitational 
mass are now different because we are using M as given in (5.4) and so require p >a. 
Choosing a t 0 (without losing anything), black hole space-times occur when p 3 a,  
a c -a. The singularities are always pointlike and they are shielded from r = +cc by 
two horizons at ?* = -$a f $a (the solutions of f’ = 0 which yield timelike coordinate 
singularities). The scalar charge of these black holes is not equal to zero and neither 
the scalar field nor the electromagnetic field is singular at either horizon. This contrasts 
with the behaviour of the black holes with scalar charge found by Bekenstein (1976). 

Examination of the antigravity limit for these magnetically charged objects requires 
a knowledge of the weak force between two widely separated dyons. Olive and 
Goddard (1978) have shown how the guiding principle of dual symmetry can lead to 
a natural generalisation of the Lorentz force law that encompasses magnetically 
charged objects 

(5.7) 
where *F@” = ~ E ~ ” ” ~ F ,  is the dual of F@”. Now the dual can be obtained by letting 

m d’x@/dr’ = (QF@”” + P * F @ “ )  dx”/dr  

E + B  B + - E  
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where E and B are the electric and magnetic field three-vectors respectively. Thus, 
(5.7) implies that magnetic charge couples in a way similar to electric charge. The 
force law (4.6) is immediately generalised to 

(5.8) Force cc (QQ’ + PP’ -MM’ - s s ’ ) i 2 .  

Thus an antigravitating dyon would be one for which 

M 2 + s 2  = P 2 + Q 2 .  

Using (5.4) this becomes 

a’(@ -a) =o. 

(5.9) 

Now p = a  implies M = 0 which Witten (1981) has argued singles out flat 
Minkowski space uniquely. Thus the correct antigravity condition for the DM solution 
is a = 0. The Scherk antigravity metric will be one of these. In this limit the DM 
solutions are black holes if @ > O  and (Y <O.  In general they have non-zero scalar, 
electric and magnetic charge. All these black holes have coincident i+ = r‘_ horizons 
and their singularities are pointlike. These then are extreme black holes and they 
satisfy tensor-vector-scalar antigravity in a way reminiscent of that in which extreme 
Reissner-Nordstrom holes satisfy tensor-vector antigravity. 

Another interesting similarity emerges if we use standard black hole thermo- 
dynamics (Hawking 1975, Davies 1976) to evaluate the temperature of DM black holes: 

(5.10) 

where a = ( M 2  + s 2  - P 2  - Q2)1’2L2.rr is the normal DM parameter, and we have chosen 
Boltzmann’s constant k = 48.rrJ3. Thus the antigravity DM black holes (with a = 0) 
have a black hole temperature of zero which is again a property of extreme Reissner- 
Nordstrom black holes. 

6. Discussion 

We have found in the extreme DM black holes, plausible weak-field tensor-vector- 
scalar antigravitating objects. The space-time part of this object is a black hole with 
(in general) non-zero scalar, electric and magnetic charges and non-zero gravitational 
mass. It mimics some of the important properties of the extreme Riessner-Nordstrom 
metric which is tensor-vector antigravitating. Hajicek (1981) has shown that the 
extreme Reissner-Nordstrom black hole (with magnetic charge only) is also the only 
gravitational soliton in Einstein-Mawell theory. We could speculate that it would be 
interesting to establish whether the DM extreme black hole could be a new member 
of the set of gravitational solitons. (This question of new gravitational solitons is also 
being pursued in the context of N = 2 supergravity by Gibbons (1981a, b).) 

Even from a classical standpoint it would be interesting to check the stability of 
the scalar charge of these black holes. It would then be clear whether we need to 
modify present ‘no-hair theorems’ and let scalar charge join the list of stable black 
hole parameters. 
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A check to see whether the antigravitating behaviour extends beyond the weak-field 
limit is another interesting problem. 
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